The effect of graded hypoxia on the metabolic rate and buccal activity of a lungless salamander (Desmognathus fuscus).
نویسندگان
چکیده
The hypothesis that the lungless salamander Desmognathus fuscus responds actively to hypoxia was tested. Patterns of buccal movements [apneic period duration, the duration (min h(-)(1)) of buccal pumping and buccal pumping frequency], heart rate and metabolic rate (rates of oxygen uptake and carbon dioxide output) were determined during a control period (21 % oxygen), a hypoxic period (2, 5, 6.5, 8 or 10 % oxygen) and a recovery period (21 % oxygen). Hypoxic salamanders maintained their rate of oxygen uptake at control levels until a critical oxygen level between 10 and 8 % oxygen was reached. The rate of carbon dioxide output remained constant across all oxygen levels, except for a significant increase during exposure to 5 % oxygen. The buccal activity of lungless salamanders was responsive to environmental hypoxia, with a significant stimulation during exposure to 6.5 % and 5 % oxygen. Buccal pumping frequency was inhibited at 2 % oxygen. Heart rate was stimulated at all hypoxic levels except 2 % O(2). During recovery, metabolic rate and heart rate returned to control levels within 20 min after all hypoxic exposures. The durations of apneic periods increased significantly compared with the hypoxic value during recovery from exposure to 10 %, 6.5 % and 5 % oxygen. Overall, the animals responded actively to hypoxia by increasing the duration of buccal activity as oxygen levels decreased. The ability of these changes to facilitate oxygen uptake is not known. However, the response of the dusky salamander to low levels of oxygen is analogous to the hypoxic ventilatory response observed in lunged vertebrates.
منابع مشابه
Exercising with and without Lungs I. the Effects of Metabolic Cost, Maximal Oxygen Transport and Body Size on Terrestrial Locomotion in Salamander Species
Metabolic cost, oxygen consumption ( M Q J , respiratory structure and body size interact to determine the capacity of salamanders for terrestrial locomotion. Salamanders respiring via both lungs and skin, Ambystoma laterale and A. tigrinum, or with skin alone, Desmognathus ochrophaeus and D. quadramaculatus, attained a steady-state M,^ during exercise in a treadmill respirometer. Endurance was...
متن کاملEffect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.
To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at...
متن کاملElimination kinetics of acetylene and Freon 22 in resting and active lungless salamanders.
To quantify diffusion limitation in cutaneous gas exchange, the elimination of two inert gases of different diffusivity, Freon 22 (CHC1F2) and acetylene (C2H2), was measured simultaneously in exclusively skin-breathing lungless salamanders, Desmognathus quadramaculatus. In resting salamanders, elimination of both gases could be described as the sum of three exponential terms. For both the mediu...
متن کاملDo larval traits re-evolve? Evidence from the embryogenesis of a direct-developing salamander, Plethodon cinereus.
Recent molecular phylogenies suggest the surprising reacquisition of posthatching metamorphosis within an otherwise direct-developing clade of lungless salamanders (family Plethodontidae). Metamorphosis was long regarded as plesiomorphic for plethodontids, yet the genus Desmognathus, which primarily includes metamorphosing species, is now nested within a much larger clade of direct-developing s...
متن کاملThe effects of temperature and activity on intraspecific scaling of metabolic rates in a lungless salamander.
The scaling of metabolic rate with body mass holds substantial predictive power as many biological processes depend on energy. A significant body of theory has been developed based on the assumption that metabolic rate scales with body mass as a power function with an exponent of 0.75, and that this scaling relationship is independent of temperature. Here we test this hypothesis at the intraspe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 24 شماره
صفحات -
تاریخ انتشار 2000